Naukowcy z Narodowego Centrum Badań Jądrowych (NCBJ) rozważają budowę nowego reaktora w Świerku. Podpisany list intencyjny pomiędzy brytyjskim konsorcjum U-Battery a NCBJ otwiera drogę do powstania pierwszego w Polsce badawczego reaktora wysokotemperaturowego (HTGR) - podaje NCBJ.
Narodowe Centrum Badań Jądrowych. Fot. NCBJ
List intencyjny o podjęciu przygotowań do budowy w instytucie w Świerku wysokotemperaturowego reaktora chłodzonego gazem (ang. High Temperature Gas Reactor – HTGR podpisali: Dominic Kieran (przedstawiciel brytyjskiego konsorcjum U-Battery) oraz prof. Krzysztof Kurek - dyrektor NCBJ. Technologia ta jest bardzo obiecująca ze względu na możliwości wytwarzania ciepła przemysłowego i odporność na różnego rodzaju awarie. Polscy naukowcy chcą, by reaktor powstał w Świerku do 2025 r. Jednostka będzie dysponowała mocą cieplną 10 MWt i elektryczną 4 MWe.
Kogeneracja jądrowa to proces jednoczesnego wytwarzania energii elektrycznej i ciepła w reaktorach jądrowych, z której mogą korzystać, w sposób dedykowany, duże zakłady przemysłowe” – podkreśla prof. Grzegorz Wrochna, przewodniczący europejskiej Inicjatywy Przemysłowej Kogeneracji Jądrowej (Nuclear Cogeneration Industrial Initiative – NC2I). „Oznacza to, że reaktory takie mogą mieć niezbyt wielką moc cieplną rzędu kilkuset megawatów, za to dostarczać ciepło przemysłowe o wysokich parametrach. To wystarczy aby np. strategiczne gałęzie przemysłu w Polsce dysponowały własnymi źródłami energii całkowicie uniezależniając się od zewnętrznych dostawców. Takim przykładem może być branża chemiczna lub rafinerie”.
Nowy reaktor będzie bezpieczny
"Reaktory wysokotemperaturowe HTGR, dzięki zastosowaniu specjalnego paliwa, w którym uran chroniony jest warstwami węglika krzemu, oraz obojętnego chemicznie helu jako chłodziwa, pozwalają bezpiecznie operować znacznie wyższymi temperaturami niż typowe reaktory chłodzone wodą. To pozwala na uzyskanie doskonałych parametrów ciepła przemysłowego.
Odporność paliwa na warunki ekstremalne powoduje, że nawet przy awarii wszystkich systemów bezpieczeństwa i całkowitej utracie chłodziwa, reaktor samoczynnie wychładza się, nie grożąc emisją substancji radioaktywnych do otoczenia. Dzięki temu, reaktory mogą być budowane w bezpośredniej bliskości innych instalacji przemysłowych i produkować energię elektryczną oraz ciepło znacznie bliżej odbiorcy, nie narażając go na straty przesyłowe. Reaktory HTGR ze względów konstrukcyjnych nie mogą mieć tak dużych mocy, jak reaktory lekkowodne. Nie nadają się więc do realizacji programu polskiej energetyki jądrowej, zakładającego budowę reaktorów o łącznej mocy elektrycznej 6000 MW. Zastąpienie 4–6 wielkich reaktorów lekkowodnych kilkudziesięcioma reaktora HTGR byłoby zdecydowanie zbyt kosztowne. Jednakże zastosowanie ich tam, gdzie prócz energii elektrycznej niezbędne jest ciepło o wysokiej temperaturze, jest ekonomicznie dobrze uzasadnione" - informuje NCBJ.
Jak podkreśla dr hab. Krzysztof Kurek, prace nad analizami bezpieczeństwa i budową reaktora HTGR pozwoliłyby naukowcom ze Świerka nie tylko na podniesienie ich kompetencji, ale też na przygotowanie do wdrożenia w Polsce na skalę przemysłową reaktorów wysokotemperaturowych. Dzięki takim jednostkom polski przemysł energochłonny mógłby zyskać dużą przewagę konkurencyjną.
Foto, video, animacje 3D, VR
Twój partner w multimediach.
Sprawdź naszą ofertę!
Aby dodać komentarz musisz być zalogowany. Przejdź do formularza logowania/rejestracji.